Nonconservative Lagrangian mechanics II: purely causal equations of motion
نویسندگان
چکیده
This work builds on the Volterra series formalism presented in [D. W. Dreisigmeyer and P. M. Young, J. Phys. A 36, 8297, (2003)] to model nonconservative systems. Here we treat Lagrangians and actions as ‘time dependent’ Volterra series. We present a new family of kernels to be used in these Volterra series that allow us to derive a single retarded equation of motion using a variational principle. PACS: 45.20.-d, 02.30.-f email:[email protected] email:[email protected]
منابع مشابه
Nonconservative Lagrangian Mechanics: A generalized function approach
We reexamine the problem of having nonconservative equations of motion arise from the use of a variational principle. In particular, a formalism is developed that allows the inclusion of fractional derivatives. This is done within the Lagrangian framework by treating the action as a Volterra series. It is then possible to derive two equations of motion, one of these is an advanced equation and ...
متن کاملNonlinear Vibration Analysis of the Composite Cable using Perturbation Method and the Green-Lagrangian Nonlinear Strain
In this study, nonlinear vibration of a composite cable is investigated by considering nonlinear stress-strain relations. The composite cable is composed of an aluminum wire as reinforcement and a rubber coating as matrix. The nonlinear governing equations of motion are derived about to an initial curve and based on the fundamentals of continuum mechanics and the nonlinear Green-Lagrangian stra...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملClassical mechanics of nonconservative systems.
Hamilton's principle of stationary action lies at the foundation of theoretical physics and is applied in many other disciplines from pure mathematics to economics. Despite its utility, Hamilton's principle has a subtle pitfall that often goes unnoticed in physics: it is formulated as a boundary value problem in time but is used to derive equations of motion that are solved with initial data. T...
متن کاملExplicit Equations of Motion for Mechanical Systems With Nonideal Constraints
Since its inception about 200 years ago, Lagrangian mechanics has been based upon the Principle of D’Alembert. There are, however, many physical situations where this confining principle is not suitable, and the constraint forces do work. To date, such situations are excluded from general Lagrangian formulations. This paper releases Lagrangian mechanics from this confinement, by generalizing D’...
متن کامل